

Malnad Enclave for Research, Innovation, Incubation, Startups & Entrepreneurship (ME-RIISE)

Micro Engineering Certification Program

PRACTICAL DEEP LEARNING: REAL WORLD DEEP LEARNING PROJECTS WITH HARDWARE IMPLEMENTATION

Course Summary

Course Duration

8 weeks (approximately 2-3hrs/week)

Resource Person

Dr. Pramod Kumar Naik & Team, Director AIEDGE Technologies

Pvt Ltd Bangalore.

Purpose of the course

This course provides a comprehensive introduction and focuses on few concepts of machine learning techniques and practical deep learning using MATLAB® and Python. This course provides a comprehensive introduction to practical deep learning using MATLAB®. Attendees will learn how to create, train, and evaluate different kinds of deep neural networks. The training will also cover how to implement algorithms of NVIDIA GPUs to accelerate network training.

Topics include:

- Importing image and sequence data
- Using convolutional neural networks for image classification, regression, and other image applications
- Using long short-term memory networks for sequence classification and forecasting
- Modifying common network architectures to solve custom problems
- Improving the performance of a network by modifying training option

This course seeks to fill all those gaps in knowledge that scare off beginners and simultaneously apply your knowledge of Data

Hassan – 573 202 www.mcehassan.ac.in

Malnad Enclave for Research, Innovation, Incubation, Startups & Entrepreneurship (ME-RIISE)

Science and Deep Learning to real-world business problems.

Pre-requisites

Undergraduate-level mathematics and experience with basic

computer operations

This course has a comprehensive syllabus that tackles all the major components of Practical Deep learning.

Our Learning path includes:

Week	Intro	oduction to Artificial Intelligence					
1	*	Course Introduction					
	*	Fundamentals of MATLAB					
	*	Cell Data Type					
	*	Tables and Time Tables					
	*	Converting between Different Data Types					
	*	Acquire real time data with concepts of IOT					
	*	Handling Large Data Set					
Week	Data Pre-processing for Machine Learning using MATLAB						
2	*	Handing Missing Values					
	*	Feature Scaling and Data Discretization					
	*	Selecting the Right Method for your Data					
	*	Concepts of Machine Learning Vs Deep Learning					
Week	Machine Learning Concepts Using MATLAB						
3	*	Data Pre-processing					
	*	Classification					
	*	K-Nearest Neighbor					
	*	Naive Bayes					
	*	Decision Trees					
	*	Support Vector Machine					
	*	Machine					

Malnad Enclave for Research, Innovation, Incubation, Startups & Entrepreneurship (ME-RIISE)

147 - 1 -	Latara de atiena de Nacional de Austria					
Week	Introduction to Neural network					
4	♦ Introduction to Neural network					
	Overview of Neural Network					
	• Introduction to neuron					
	Classification of cancer cells using neural network.					
Week	Wine classification using neural network. Introduction to Image and Computer Vision					
5	Introduction to Image and Computer Vision Introduction to Image Processing					
3	· · · · · · · · · · · · · · · · · · ·					
	 Introduction to Computer Vision 					
	Demos on image and Computer Vision Transfer Learning for Image Classification					
	Transfer Learning for Image Classification					
	Objective: Perform image classification using pretrained					
	networks. Use transfer learning to train customized classification					
	networks.					
	Pretrained networks					
	Image datastores					
	❖ Transfer learning					
Week	Network evaluation.					
6	Interpreting Network Behavior Objective: Gain insight into how a network is operating by					
0	visualizing image data as it passes through the network. Apply					
	this technique to different kinds of images.					
	Activations					
	 Feature extraction for machine learning 					
	Creating Networks					
	Objective: Build convolutional networks from scrat					
	Understand how information is passed between network layers					
	and how different types of layers work.					
	 Training from scratch 					
	Neural networks					
	 Redrainetworks Convolution layers and filters 					
Week	Training a Network					
7	Objective: Understand how training algorithms work. Set training					
_	options to monitor and control training.					
	Network training					
	 Training progress plots 					
	· · · · · · · · · · · · · · · · · · ·					

Malnad Enclave for Research, Innovation, Incubation, Startups & Entrepreneurship (ME-RIISE)

*	Val	lio	lat	ion

Improving Network Performance

Objective: Choose and implement modifications to training algorithm options, network architecture, or training data to improve network performance.

- Training options
- Directed acyclic graphs
- Augmented datastores

Week

Performing Image Regression

8

Objective: Create convolutional networks that can predict continuous numeric responses.

- Transfer learning for regression
- Evaluation metrics for regression networks

Using Deep Learning for Computer Vision

Objective: Train networks to locate and label specific objects within images.

- Image application workflow
- Object detection

Classifying Sequence Data

Objective: Build and train networks to perform classification on ordered sequences of data, such as time series or sensor data.

- Long short-term memory networks
- Sequence classification
- Sequence preprocessing
- Categorical sequences

Generating Sequences of Output

Objective: Use recurrent networks to create sequences of predictions.

- Sequence to sequence classification
- Sequence forecasting